Path to Mitigation: Why do I want to work on my beach?

Greg Kleinheinz, R.S., Ph.D.

Department of Engineering Technology University of Wisconsin – Oshkosh Oshkosh, WI 54901 Phone - (920) 424-1100 E-mail - <u>kleinhei@uwosh.edu</u>

Challenges to Beach Monitoring and Remediation

- Why?
- Where to start?
- Cost?
- Political will
- I have used it since 1930!

Challenges to Beach Monitoring and Remediation

- Why?
- Where to start?
- Cost?
- Political will
- I have used it since 1930!

A part of our history and heritage.

Recreational Water: An Integral Part of the Culture of Water-Rich States Oshkosh, WI - 1911

2395. In the Good Old Summertime, Oshkosh, Wo.

EVERYONE POOPS By Taro Gomi

0 06 06

100

Kane/Miller Book Publishers

A Public Health Issue

Indicator organism results provide an assessment of the "RISK" of contacting a more pathogenic microorganism.

What is "Risk"?

A statistical probability of an event occurring in a population

In order to assess 'real' risk you must know the source!

Beach Monitoring

While any data that helps make decisions is good...no substitute to monitoring.

Here is why.....

2002: Days that symptomatic campers bathed in Nicolet Beach

From: R. Kohlberg, DC Health Department

Challenges to Beach Monitoring and Remediation

- Where to start?
- Cost?

• Why?

- Political will
- I have used it since 1930!

Much Monitoring has Occurred Since BEACH Act... There is still more that is needed!

Beach Sanitary Survey

To explore and accurately characterize beaches along Lake Michigan and Lake Superior in terms of possible sources of microbial pollution entering the beach area.

Find Sources

Find Sources

Find Sources

Unknown Lake, W

Next year... no test over 100 MPN/100mL!!!

© LandVoyage.com, USGS

Rain Sampling 1,2,3,4,8,12 & 24 hrs after a rain event of >0.25"

Spatial outlets.shp
Spatial samples.shp
Roads.shp

Sample R

Outlet 2

>82,000 E.coli/100mL

•Less *E.coli* the farther from the beach /Sand *E.coli* correlates to water E.coli

JUNIPER

>325,000 E.coli/100mL

Sample L

Outlet 1

Watershed Inputs Near Beach

North Fish Creek Average *E. coli* 644.4 MPN/100 mL B2 46° 35.243 '90° 5.611'

terraserver

South Fish Creek Average *E. coli* 750.3 MPN/100 mL B1 46° 35.175 '90° 55.880'

Depth is very important

Avian Waste

Beach	Mean log ₁₀ E.coli Concentraion	Gulls as a Percent of Total Birds Present	Geese as a Percent of Total Birds Present	Beach	Avian Waste vs. Bird Counts	Avian Waste vs. Bird Counts:	Avian Waste vs. <i>E.coli</i>	Avian Waste vs. <i>E.coli</i> : p-value	Bird Count vs. <i>E.coli</i>	Bird Count vs. <i>E.coli:</i> p-value	Notes
Balleys Harbor	1.44	78%	21%		A ANG	p-value			1000	21-12- 2	
Egg Harbor	1.45	53%	43%	Baileys Harbor	0.138	0.745	-0.365	0.374	-0.434	0.282	High bird levels.
Ellison Bay	1.65	41%	27%	Egg Harbor	-0.191	0.574	0.521	0.100	-0.149	0.662	
Ephraim	1.05	61%	27%	Ellison Bay	0.063	0.871	0.043	0.913	0.880	0.002	
Fish Creek	1.58	36%	30%	Ephraim	0.563	0.090	-0.135	0.711	-0.117	0.748	
Newport	0.79	88%	4%	Fish Creek	0.000	1.000	-0.216	0.524	-0.057	0.868	
Otumba	1.68	18%	73%	Newport	0.853	0.003	-0.166	0.670	-0.036	0.927	010 State 1
SisterBay	1.30	67%	7%	Otumba	0.229	0.474	-0.184	0.567	0.695	0.012	Higher goose levels.
Sunset	1.79	78%	18%	Sister Bay	0.103	0.778	-0.008	0.982	0.478	0.162	
Whitefsh Dunes	117	100%	0%	Sunset	-0.255	0.424	0.505	0.094	-0.045	0.891	Higher goose and duck levels.
Thirde of Duries		10070	0,0	Whitefish Dunes	0.129	0.397	-0.172	0.259	0.345	0.020	Mostly gull waste. High levels.

E.coli and Sand

Table 1. Beaches in	cluded in the sand	evaluation study	and summary of data	from 2005.	
Beach	Mean Upshore	Mean Swash		Mean E.coli	
1. A. C.	Sand E.coli	Sand E.coli	Mean Submerged	from water	
A Stewart	CFU/g	CFU/g	Sand E.coli CFU/g	MPN/100mL	
Baileys Harbor	56.6	106.5	3.5	169.8	
Ephraim Beach	43.6	52.2	7.8	134.6	Constant in
Fish Creek	73.7	137.9	8.7	196.9	
Otumba Park	18	190.4	11.9	335.4	and the
Sunset Park	99.4	136.7	58.1	107.3	Section 2
Whitefish Dunes	216.7	91.5	2.8	259.5	

Table 2. Beaches included in the sand evaulation study and summary of data from 2006.

Beach	Mean Upshore	Mean Swash	ELSA SA MA	Stand Stand	
State May	Sand E.coli	Sand E.coli	Mean Submerged	from water	and the second
	CFU/g	CFU/g	Sand E.coli CFU/g	MPN/100mL	
Baileys Harbor	76.1	31.6	9.8	127.2	
Ephraim Beach	13.1	29.3	0.4	38.9	
Fish Creek	5.4	21.3	2.4	58.1	Constant State
Otumba Park	29.7	127.2	11.5	89.4	
Sunset Park	59	115.2	21	184.4	1 and the second
Whitefish Dunes	78.7	39.9	1.9	141.3	and the second second

Entire County Mean E.coli MPN/100mL and County Rainfall

ALC: NOT	Seasonal Mean	1-3 hour mean	8 hour sample	12 hour sample	24 hour sample
Seasonal			and the second second	Charles and Charles	The Second
Mean	1.000				
1-3 hour					
mean	0.000	1.000			
8 hour					
sample	0.000	0.467	1.000		
12 hour					
sample	0.024	0.031	0.853	1.000	
24 hour					
sample	0.754	0.000	0.119	0.647	1.000

Overall Evaluation and Data Analysis

Overall Impact

(ANOVA-Overall)						
Beach	p-value					
Baileys Harbor	0.000					
Whitefish Dunes	0.110					
Egg Harbor	0.849					
Murphy Park	0.000					
Sister Bay	0.000					
Ellison Bay	0.000					
Sunset	0.011					
Nicolet	0.041					

Case #2

ample .		Seasonal Mean	1-3 hour mean	8 hour sample	12 hour sample	24 hour sample
	Seasonal	Service State		No Non Al		
	Mean	1.000				
	1-3 hour	and the State				
	mean	1.000	1.000			
	8 hour	Sund Street		NO DE DE		
	sample	0.967	0.955	1.000	1	
	12 hour				1 Carlos	
	sample	0.973	0.987	0.862	1.000	
1.000	24 hour			and the second second	the second second	
E he geat	sample	1.000	0.999	0.995	0.976	1.000

Genetic Evaluations

Genetic Evaluations

You must have good data to make good decisions and allow regulators to see why your beach benefits the public and is different than a private beach.

Best Management Practices

- Regular Maintenance of Storm Sewers and catch basins - Significant source of *E.coli*
- Street and Impervious Surface Cleaning
- Know where pipes 'come from' and 'go'
- Beach Grooming
- Removal of algae and organics
- Storm Water Ordinances
- Public Signage/Public Education
 - Pick-up pet waste, pick-up trash, Do Not feed birds, etc.
- Others?

Challenges to Beach Monitoring and Remediation

- Where to start?
- Cost?

• Why?

- Political will
- I have used it since 1930!

Now that we have all this data...what can we do?

Make a Difference!

 Leverage local work and resources – DON'T REINVENT THE WHEEL!

- Stage/Phase the work
- Projects should be additive
- Write grants!
- \$50K to \$1 million per beach

"Healthy Waters, Strong Economy"

The Brookings Institution, September 2007

http://www.healthylakes.org/site_upload/upload/GrtLakesCostBenefit.pdf

- Investing \$26 billion in the GL will result in over \$80 billion in shortand long-term economic benefits
- Direct economic benefits from recreation
- Raises property values
- Makes local area more attractive to businesses and workers
- Direct economic benefits from recreation

Before

www.startwithmiller.com

After

Challenges to Beach Monitoring and Remediation

- Where to start?
- Cost?

• Why?

- Political will
- I have used it since 1930!

Economic Benefit

- Improving water quality not only for healthier beaches
- Value for beachgoers
 - \$45-60/person/day at the beach
 - 150 visitors x 30 beaches x 90 beach days x \$50 each = >\$20 mil
- \$18.5 bil industry in WI (\$313mil)
- Billions related to water.
- What does that mean for local community?
- Increased property values
- Recruitment of business.
- Increased visitors:
 - Restaurants
 - Hotel
 - Small businesses
 - Other local tourist attractions

Beaches, water recreation & related activities generate billions of dollars annually

Photo courtesy Richard Whitman

Beach can be centerpiece of a community!!

R

Challenges to Beach Monitoring and Remediation

- Where to start?
- Cost?

• Why?

- Political will
- I have used it since 1930!

Social Equity

- Beaches are part of the social history of Wisconsin
- Beach resources are a public good that must be maintained for the larger citizenry of the State
- Interestingly, you need permits, large amounts of testing and maintenance at a waterpark, but there are no such requirements at public beaches.
- Anyone can visit a beach and partake in our natural resources and there are no wristbands to buy.
- In communities where cost has been influenced by outside factors beaches can be a recreational resource for all members of society without regard to social or economic status.

In the End....

A protected beach with mitigated sources of input:

- Protects Public Health
- Increases water quality
- Makes beach a destination in the community
- Makes community a destination
- Drives economic growth of communities
- All members of the community benefit!

Beaches are a rare example of: Environmental, Economic, and Social Benefits from one project!

If nothing else....

Have a sense of humor!

Used Food Hauler

DIRTY DEEDS... DONE DIRT CHEAP!

Thank you!